
event.cwi.nl/lsde

Large Scale Data Engineering
Big Data Frameworks:
Hadoop & Spark

event.cwi.nl/lsde

Key premise: divide and conquer

work

w1 w2 w3

r1 r2 r3

result

worker worker worker

partition

combine

event.cwi.nl/lsde

Parallelisation challenges
• How do we assign work units to workers?
• What if we have more work units than workers?
• What if workers need to share partial results?
• How do we know all the workers have finished?
• What if workers die?

• What if data gets lost while transmitted over the network?

What’s the common theme of all of these problems?

event.cwi.nl/lsde

Common theme?
• Parallelization problems arise from:

– Communication between workers (e.g., to exchange state)
– Access to shared resources (e.g., data)

• Thus, we need a synchronization mechanism

event.cwi.nl/lsde

Managing multiple workers
• Difficult because

– We don’t know the order in which workers run
– We don’t know when workers interrupt each other
– We don’t know when workers need to communicate partial results
– We don’t know the order in which workers access shared data

• Thus, we need:
– Semaphores (lock, unlock)
– Conditional variables (wait, notify, broadcast)
– Barriers

• Still, lots of problems:
– Deadlock, livelock, race conditions...
– Dining philosophers, sleeping barbers, cigarette smokers...

• Moral of the story: be careful!

event.cwi.nl/lsde

Current tools
• Programming models

– Shared memory (pthreads)
– Message passing (MPI)

• Design patterns
– Master-slaves

– Producer-consumer flows
– Shared work queues

message passing

P1 P2 P3 P4 P5

shared memory

P1 P2 P3 P4 P5
m

em
ory

coordinator

workers

producer consumer

producer consumer

work
queue

event.cwi.nl/lsde

Parallel programming: human bottleneck
• Concurrency is difficult to reason about
• Concurrency is even more difficult to reason about

– At the scale of datacenters and across datacenters
– In the presence of failures
– In terms of multiple interacting services

• Not to mention debugging…
• The reality:

– Lots of one-off solutions, custom code
– Write you own dedicated library, then program with it

– Burden on the programmer to explicitly manage everything

• The MapReduce Framework alleviates this
– making this easy is what gave Google the advantage

event.cwi.nl/lsde

What’s the point?
• It’s all about the right level of abstraction

– Moving beyond the von Neumann architecture
– We need better programming models

• Hide system-level details from the developers
– No more race conditions, lock contention, etc.

• Separating the what from how
– Developer specifies the computation that needs to be performed
– Execution framework (aka runtime) handles actual execution

The data center is the computer!

event.cwi.nl/lsde

MAPREDUCE AND HDFS

event.cwi.nl/lsde

Typical Big Data Problem
• Iterate over a large number of records
• Extract something of interest from each
• Shuffle and sort intermediate results
• Aggregate intermediate results
• Generate final output

Key idea: provide a functional abstraction for these two operations

Map

Reduce

event.cwi.nl/lsde

MapReduce
• Programmers specify two functions:

map (k1, v1) → [<k2, v2>]
reduce (k2, [v2]) → [<k3, v3>]
– All values with the same key are sent to the same reducer

shuffle and sort: aggregate values by keys

reduce reduce reduce

map map map map

a 1 b 2 c 6 c 3 a 5 c 2

a 1 b 2 635 c 2

k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 v7 k8 v8

b 7 c 8

87

r1 s1 r2 s2 r3 s3

event.cwi.nl/lsde

MapReduce runtime
• Orchestration of the distributed computation
• Handles scheduling

– Assigns workers to map and reduce tasks
• Handles data distribution

– Moves processes to data
• Handles synchronization

– Gathers, sorts, and shuffles intermediate data
• Handles errors and faults

– Detects worker failures and restarts
• Everything happens on top of a distributed file system (more information

later)

event.cwi.nl/lsde

MapReduce
• Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’*) → <k’’, v’’>*
– All values with the same key are reduced together

• The execution framework handles everything else
• This is the minimal set of information to provide
• Usually, programmers also specify:

partition (k’, number of partitions) → partition for k’
– Often a simple hash of the key, e.g., hash(k’) mod n
– Divides up key space for parallel reduce operations
combine (k’, v’*) → <k’, v’’*>*
– Mini-reducers that run in memory after the map phase
– Used as an optimization to reduce network traffic

event.cwi.nl/lsde

Putting it all together

shuffle and sort: aggregate values by keys

reduce reduce reduce

map map map map

a 1 b 2 c 6 c 3 a 5 c 2

a 1 b 2 985 c 2

k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 v7 k8 v8

b 7 c 8

7

r1 s1 r2 s2 r3 s3

combine combine combine combine

a 1 b 2 c 9 a 5 c 2 b 7 c 8

partition partition partition partition

event.cwi.nl/lsde

“Hello World”: Word Count

Map(String docid, String text):
for each word w in text:

Emit(w, 1);

Reduce(String term, Iterator<Int> values):
int sum = 0;
for each v in values:

sum += v;
Emit(term, sum);

event.cwi.nl/lsde

MapReduce Implementations
• Google has a proprietary implementation in C++

– Bindings in Java, Python
• Hadoop is an open-source implementation in Java

– Development led by Yahoo, now an Apache project
– Used in production at Facebook, Twitter, LinkedIn, Netflix, …

– Popular on-premise big data processing platform, but..
• Has been losing support to cloud-based platforms

event.cwi.nl/lsde

Distributed file system
• Do not move data to workers, but move workers to the data!

– Store data on the local disks of nodes in the cluster
– Start up the workers on the node that has the data local

• Why?
– Avoid network traffic if possible
– Not enough RAM to hold all the data in memory
– Disk access is slow, but disk throughput is reasonable

• A distributed file system is the answer
– GFS (Google File System) for Google’s MapReduce
– HDFS (Hadoop Distributed File System) for Hadoop

Note: all data is replicated for fault-tolerance (HDFS default:3x)

Compute Nodes
worker workerworker worker worker workerworker workerworker worker worker worker

HDFS (GFS)
Distributed
File-system

MapReduce Job è

virtual

real

event.cwi.nl/lsde

HDFS: Assumptions
• High component failure rates

– Inexpensive commodity components fail all the time
• “Modest” number of huge files

– Multi-gigabyte files are common, if not encouraged
• Files are write-once, mostly appended to

– Perhaps concurrently
• Large streaming reads over random access

– High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

event.cwi.nl/lsde

HDFS: Design Decisions
• Files stored as chunks

– Fixed size (64MB)
• Reliability through replication

– Each chunk replicated across 3+ chunkservers
• Single master to coordinate access, keep metadata

– Simple centralized management
• No data caching

– Little benefit due to large datasets, streaming reads

event.cwi.nl/lsde
Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state(block id, byte range)

block data

HDFS namenode

HDFS datanode
Linux file system

…

HDFS datanode
Linux file system

…

File namespace /foo/bar
block 3df2

Application
HDFS Client

HDFS architecture

event.cwi.nl/lsde

Namenode responsibilities
• Managing the file system namespace:

– Holds file/directory structure, metadata, file-to-block mapping, access
permissions, etc.

• Coordinating file operations:
– Directs clients to datanodes for reads and writes
– No data is moved through the namenode

• Maintaining overall health:

– Periodic communication with the datanodes
– Block re-replication and rebalancing
– Garbage collection

event.cwi.nl/lsde

Putting everything together

datanode daemon

Linux file system

…

tasktracker

worker node

datanode daemon

Linux file system

…

tasktracker

worker node

datanode daemon

Linux file system

…

tasktracker

worker node

namenode

namenode daemon

job submission node

jobtracker

event.cwi.nl/lsde

Basic cluster components
• One of each:

– Namenode (NN): master node for HDFS
– Jobtracker (JT): master node for job submission

• Set of each per worker machine:
– Tasktracker (TT): contains multiple task slots

– Datanode (DN): serves HDFS data blocks

event.cwi.nl/lsde

Anatomy of a job
• MapReduce program in Hadoop = Hadoop job

– Jobs are divided into map and reduce tasks
– An instance of running a task is called a task attempt (occupies a slot)
– Multiple jobs can be composed into a workflow

• Job submission:

– Client (i.e., driver program) creates a job, configures it, and submits it
to jobtracker

– That’s it! The Hadoop cluster takes over

event.cwi.nl/lsde

Anatomy of a job
• Behind the scenes:

– Input splits are computed (on client end)
– Job data (jar, configuration XML) are sent to JobTracker
– JobTracker puts job data in shared location, enqueues tasks
– TaskTrackers poll for tasks

– Off to the races

event.cwi.nl/lsde

InputSplit InputSplit InputSplit

Input File Input File

InputSplit InputSplit

Record
Reader

Record
Reader

Record
Reader

Record
Reader

Record
Reader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
pu

tF
or

m
at

event.cwi.nl/lsde

… …

InputSplit InputSplit InputSplit

Client

Records

Mapper

Record
Reader

Mapper

Record
Reader

Mapper

Record
Reader

event.cwi.nl/lsde

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here)

event.cwi.nl/lsde

Reducer Reducer Reduce

Output File

Record
Writer

O
ut

pu
tF

or
m

at

Output File

Record
Writer

Output File

Record
Writer

event.cwi.nl/lsde

Shuffle and sort in Hadoop
• Probably the most complex aspect of MapReduce
• Map side

– Map outputs are buffered in memory in a circular buffer
– When buffer reaches threshold, contents are spilled to disk
– Spills merged in a single, partitioned file (sorted within each partition):

combiner runs during the merges
• Reduce side

– First, map outputs are copied over to reducer machine
– Sort is a multi-pass merge of map outputs (happens in memory and on

disk): combiner runs during the merges

– Final merge pass goes directly into reducer

event.cwi.nl/lsde

Shuffle and sort

Mapper

Reducer

other mappers

other reducers

circular
buffer

(memory)

spills (on disk)

merged spills
(on disk)

intermediate files
(on disk)

Combiner

Combiner

event.cwi.nl/lsde

YARN: Hadoop version 2.0
• Hadoop limitations:

– Can only run MapReduce
– What if we want to run other distributed frameworks?

• YARN = Yet-Another-Resource-Negotiator
– Provides API to develop any generic distribution application

– Handles scheduling and resource request
– MapReduce (MR2) is one such application in YARN

event.cwi.nl/lsde

fast in-memory
processing

graph
analysis

machine
learning

data querying

The Hadoop Ecosystem

YARN

H
C
ATA

LO
G

MLIB

Impala
Spark SQLGraphX &

GrapFrames

• “Data Lakes”

– Large collections of raw data, stored cheaply in HDFS (or in the cloud)
– A zoo of tools and pipelines to clean, transform & analyze this data

• Drill, Hive and Impala are SQL systems that work in Hadoop
• Hcatalog is the Hadoop meta-data repository (which tables exist?)

event.cwi.nl/lsde

YARN: architecture

event.cwi.nl/lsde

Spark

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

What is Spark?
• Fast and expressive cluster computing system interoperable with

Apache Hadoop
• Improves efficiency through:

– In-memory computing primitives
– General computation graphs

• Improves usability through:
– Rich APIs in Scala, Java, Python
– Interactive shell

Up to 100× faster
(2-10× on disk)

Often 5× less code

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

The Spark Stack

• Spark is the basis of a wide set of projects in the Berkeley Data Analytics
Stack (BDAS)

Spark

Spark
Streaming

(real-time)

GraphX
GraphFrames

(graph)
…

Spark
SQL

MLLIB
(machine
learning)

More details: amplab.berkeley.educredits:
Matei Zaharia & Xiangrui Meng

http://amplab.berkeley.edu

event.cwi.nl/lsde

Why a New Programming Model?

• MapReduce greatly simplified big data analysis
• But as soon as it got popular, users wanted more:

– More complex, multi-pass analytics (e.g. ML, graph)
– More interactive ad-hoc queries
– More real-time stream processing

• All 3 need faster data sharing across parallel jobs

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Data Sharing in MapReduce

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication, serialization, and disk IO
credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

iter. 1 iter. 2 . . .

Input

Data Sharing in Spark

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time
processing

~10× faster than network and disk
credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Spark Programming Model
• Key idea: resilient distributed datasets (RDDs)

– Distributed collections of objects that can be cached in memory
across the cluster

– Manipulated through parallel operators
– Automatically recomputed on failure

• Programming interface
– Functional APIs in Scala, Java, Python
– Interactive use from Scala shell

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Example: Log Mining
Load error messages from a log into memory, then interactively search
for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda x: x.startswith(“ERROR”))

messages = errors.map(lambda x: x.split(‘\t’)[2])

messages.cache()

Base RDDTransformed RDD

Worker

Worker

Worker

Driver

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Lambda Functions

Lambda function ç functional programming!

= implicit function definition

errors = lines.filter(lambda x: x.startswith(“ERROR”))

messages = errors.map(lambda x: x.split(‘\t’)[2])

bool detect_error(string x) {

return x.startswith(“ERROR”);

}

event.cwi.nl/lsde
credits:
Matei Zaharia & Xiangrui Meng

Example: Log Mining
Load error messages from a log into memory, then interactively search
for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda x: x.startswith(“ERROR”))

messages = errors.map(lambda x: x.split(‘\t’)[2])

messages.cache() Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda x: “foo” in x).count

messages.filter(lambda x: “bar” in x).count

. . .

tasks

results
Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in
<1 sec (vs 20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

event.cwi.nl/lsde

Fault Tolerance

• file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

filterreducemap

In
pu

t f
ile

RDDs track lineage info to rebuild lost data

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

filterreducemap

In
pu

t f
ile

• file.map(lambda rec: (rec.type, 1))
.reduceByKey(lambda x, y: x + y)
.filter(lambda (type, count): count > 10)

RDDs track lineage info to rebuild lost data

Fault Tolerance

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Example: Logistic Regression

0
500

1000
1500
2000
2500
3000
3500
4000

1 5 10 20 30

R
un

ni
ng

 T
im

e
(s

)

Number of Iterations

Hadoop
Spark

110 s / iteration

first iteration 80 s
further iterations 1 s

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Example: Logistic Regression

0
500

1000
1500
2000
2500
3000
3500
4000

1 5 10 20 30

R
un

ni
ng

 T
im

e
(s

)

Number of Iterations

Hadoop
Spark

110 s / iteration

first iteration 80 s
further iterations 1 s

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Spark in Scala and Java

// Scala:

val lines = sc.textFile(...)
lines.filter(x => x.contains(“ERROR”)).count()

// Java:

JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {

Boolean call(String s) {
return s.contains(“error”);

}
}).count();

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Supported Operators

•map

•filter

•groupBy

•sort

•union

•join

•leftOuterJoin

•rightOuterJoin

•reduce

•count

•fold

•reduceByKey

•groupByKey

•cogroup

•cross

•zip

sample

take

first

partitionBy

mapWith

pipe

save

...

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Software Components

• Spark client is library in user program (1 instance
per app)

• Runs tasks locally or on cluster

– Mesos, YARN, standalone mode
• Accesses storage systems via Hadoop

InputFormat API

– Can use HBase, HDFS, S3, …

Your application

SparkContext

Local
threads

Cluster
manager

Worker
Spark

executor

Worker
Spark

executor

HDFS or other storage
credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Task Scheduler

General task graphs
Automatically pipelines
functions
Data locality aware
Partitioning aware
to avoid shuffles

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Spark SQL
• Columnar SQL analytics engine for Spark

– Support both SQL and complex analytics
– Columnar storage, JIT-compiled execution, Java/Scala/Python UDFs
– Catalyst query optimizer (also for DataFrame scripts)

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Spark SQL Architecture

Hive
Catalog

HDFS

Client

Driver

SQL
Parser

Physical Plan

Execution

CLI JDBC

Spark

Cache Mgr.

Catalyst
Query

Optimizer

[Engle et al, SIGMOD 2012]credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

From RDD to DataFrame

• A distributed collection of rows with the same schema (RDDs
suffer from type erasure)

• Can be constructed from external data sources or RDDs into
essentially an RDD of Row objects (SchemaRDDs as of Spark <
1.3)

• Supports relational operators (e.g. where, groupby) as well as
Spark operations.

• Evaluated lazily à non-materialized logical plan

credits:
Matei Zaharia & Reynold Xin

event.cwi.nl/lsde

DataFrame: Data Model
• Nested data model
• Supports both primitive SQL types (boolean, integer, double, decimal,

string, data, timestamp) and complex types (structs, arrays, maps, and
unions); also user defined types.

• First class support for complex data types

credits:
Matei Zaharia & Reynold Xin

event.cwi.nl/lsde

DataFrame Operations

• Relational operations (select, where, join, groupBy) via a DSL
• Operators take expression objects
• Operators build up an abstract syntax tree (AST), which is then

optimized by Catalyst.

• Alternatively, register as temp SQL table and perform traditional SQL
query strings

credits:
Matei Zaharia & Reynold Xin

event.cwi.nl/lsde

Catalyst: Plan Optimization & Execution

SQL AST

DataFrame

Unresolved
Logical Plan

Logical Plan Optimized
Logical Plan RDDsSelected

Physical Plan

Analysis Logical
Optimization

Physical
Planning

Co
st

 M
od

el

Physical
Plans

Code
Generation

Catalog

credits:
Matei Zaharia & Reynold Xin

event.cwi.nl/lsde

Catalyst Optimization Rules

Add

Attribute(x) Literal(3)

x + (1 + 2) x + 3
credits:
Matei Zaharia & Reynold Xin

• Applies standard rule-based optimization
(constant folding, predicate-pushdown,
projection pruning, null propagation,
boolean expression simplification, etc)

Logical Plan Optimized
Logical Plan

Logical
Optimization

event.cwi.nl/lsde

61

def add_demographics(events):
u = sqlCtx.table("users") # Load partitioned Hive table
events \

.join(u, events.user_id == u.user_id) \ # Join on user_id

.withColumn("city", zipToCity(df.zip)) # Run udf to add city column

Physical Plan
with Predicate Pushdown

and Column Pruning

join

optimized
scan

(events)

optimized
scan

(users)

events = add_demographics(sqlCtx.load("/data/events", "parquet"))
training_data = events.where(events.city == "Melbourne").select(events.timestamp).collect()

Logical Plan

filter

join

events file users table

Physical Plan

join

scan
(events)

filter

scan
(users)

credits:
Matei Zaharia & Reynold Xin

event.cwi.nl/lsde

An Example Catalyst Transformation

6
2

1. Find filters on top of
projections.

2. Check that the filter can be
evaluated without the result
of the project.

3. If so, switch the operators.

Project
name

Project
id,name

Filter
id = 1

People

Original
Plan

Project
name

Project
id,name

Filter
id = 1

People

Filter
Push-Down

credits:
Matei Zaharia & Reynold Xin

event.cwi.nl/lsde

Other Spark Stack Projects

We will revisit Spark SQL in the SQL on Big Data lecture

• Structured Streaming: stateful, fault-tolerant stream

–sc.twitterStream(...)
.flatMap(_.getText.split(“ ”))
.map(word => (word, 1))
.reduceByWindow(“5s”, _ + _)

– we will revisit structured streaming in the Data Streaming lecture

this lecture, still:
• GraphX & GraphFrames: graph-processing framework
• MLlib: Library of high-quality machine learning algorithms

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Performance
Im

pa
la

 (d
is

k)

Im
pa

la
 (m

em
)

Re
ds

hi
ft

Sp
ar

k
SQ

L
(d

is
k)

Sp
ar

k
SQ

L
(m

em
)

0

5

10

15

20

25

R
es

po
ns

e
Ti

m
e

(s
)

SQL

St
or

m

Sp
ar

k

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

B
/s

/n
od

e)

Streaming

H
ad

oo
p

G
ira

ph

G
ra

ph
X

0

5

10

15

20

25

30

R
es

po
ns

e
Ti

m
e

(m
in

)
Graphcredits:

Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

What it Means for Users

• Separate frameworks:

…
HDFS
read

HDFS
writeET

L HDFS
read

HDFS
writetra

in HDFS
read

HDFS
writequ

er
y

HDFS

HDFS
read ET

L
tra

in
qu

er
y

Spark:

credits:
Matei Zaharia & Xiangrui Meng

event.cwi.nl/lsde

Summary
• Hadoop: The MapReduce Framework

– The first to simplify parallel processing on big data
• You write two functions (Map, Reduce), runtime does the rest
• Tight coupling with HDFS (distributed file system), for locality

– First generic Big Data platform

• 2.0 split functionality into HDFS, YARN and MapReduce
• Still popular on-premise, HDFS/YARN often combined with other tools

• The Spark Framework
– Generalize Map(),Reduce() to a much larger set of operations

• Join, filter, group-by, …è closer to database queries
– Tight coupling with Streaming, ML and Graph APIs
– High(er) performance (than MapReduce)

• In-memory caching, catalyst query optimizer, JIT compilation, ..

• More schema knowledge: RDDs è DataFrames

